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Abstract—Two-phase mixtures are admitted 10 the energy criterion of stability, This generality allows phase
transitions to be interpreted as global instabilities, and so enables the prediction of the onset of these
transitions. Stability is assessed in various loading environments, corresponding broadly to the well known
hard and soft devices. The work is illustrated mainly by reference to deformation twinning.

1. INTRODUCTION

The natural occurrence of twinned crystals of quartz, phenomena such as the martensitic
transformation of steel, and a recent paper of Ericksen{1] concerning the stability of nonlinearly
elastic bars all suggest that it may be profitable to allow more than one phase in an equilibrium
theory of the mechanics of crystals. That some such effects may be modelled by an elastic
constitutive law is suggested by the remarkable fact that as a perfect crystal of calcite may be
twinned by the pressure of a single knife edge into the appropriate lattice piane so may the
twinned crystal be “‘untwinned” by the application of pressure to the same material plane.

A homogeneously deformed crystal is said to be composed of one phase. With each phase is
associated an unique matrix of deformation gradients. Thus a two-phase mixture may be
represented by two matrices of deformation gradients provided that these matrices are
commensurate, in the sense that each transforms the (undeformed) common boundary of the
phases in the same way. Displacements are required to be continuous, for we are unable to
allow for the fracture of the material. So, piecewise constant strains are admitted to the energy
criterion of stability. This generality allows phase transitions to be interpreted as global
instabilities, and enables the prediction of the onset of these transitions. Briefly, the total energy
per unit reference volume is required to be a strong minimum in any globally stable equilibrium
configuration, this configuration being generally a mixture of various phases.

Loosely, a homogeneous (one-phase) configuration ceases to be strictly stable when the
constitutive law ceases to be uniquely invertible. This is an inherently nonlinear effect. We
assess the stability in loading environments which are such as to reduce the problem to a set of
one-dimensional problems, each analogous to that one set and solved in [1].

The article begins with a review of the ideas of crystal symmetry, for symmetry is a key
feature of instabilities such as twinning. Following Ericksen[2] and Parry[3}, the symmetry
transformations of the crystal are not required to be rotations. It is apparent that a given stress
may then correspond to more than one strain, and that some kind of instability is likely.

Next, the stability criterion is precisely stated and the loading environments are prescribed.
We do not suppose that it is possible to perform experiments where these loading conditions
are exactly obtained, but we are content to observe that phase transitions of some description
occur in each class of device. Two classes of global instability are defined, one arising from the
crystal symmetry, the other not.

Finally, the twinning mode of instability is analysed. In this mode, one phase is the mirror
image of the other in the common boundary, the mode is at least neutrally stable in some
configurations of high symmetry. Generally, there is a profusion of possible twinning modes in
any given state; it is an open probiem to determine the operative modes in this situation. The
selection criterion should presumably combine some energetic factor with the purely geometric
criterion used in the crystallographic literature.

2. CRYSTAL SYMMETRY

Assume that the crystal possesses a strain energy function, w, say, relative to some
reference configuration k and relative to the referential axes of the matrix of deformation
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gradients, A say. The relation w,(A) is supposed objective, so that

wi(A) = w(RA), @0

where R is any proper or improper orthogonal transformation.

All information about the symmetry of the crystal is contained in the isotropy group ¥*
relative to k. The elements G* of 9* are unimodular (density-preserving) transformations of the
reference configuration which leave the strain energy invariant. Thus

wi(A) = wi{AG*). 22)

Under a change of reference configuration, k -k say, 9* maps into a conjugate group ¥
according to Noll's rule
Gt = PG*P"! 2.3)

where P maps k into k. From (2.3), the components of one type of mixed tensor, representing
the symmetry elements, are invariant with respect to change of reference configuration.
Accordingly, it is sufficient to consider the symmetry of just one monatomic lattice. For the
sake of simplicity, we consider only two dimensional problems and choose to investigate the
simple square lattice.

Lt w denote the strain energy relative to the simple square lattice as reference. Following
Ericksen(2], w is assumed to depend only on the sites of the atoms in the lattice, and not on the
identity of the occupants of the individual sites. Thus rearrangements of the lattice, which map
these sites onto themselves, constitute symmetry transformations. Denote the group of these
rearrangements by I'. Then,

T'={vy; 7y are integers, det (y;) = =1}.

I is generated by three elements, viz.

= Toh e=(To ) #=( ) @9

50 that any element of T is some product of the powers and inverses of F, G and H F
represents rotation through a right angle, G reflection in a coordinate plane and H simple shear
parallel to one axis through one unit of lattice spacing.

The double covariance expressed by {2.1) and (2.2) means that w may be defined arbitrarily
only over subsets of the space of deformation gradients, see Parry[3]. Specificaily, let

AA= (; j) @.5)

where A’ denotes the transpose of A, then w may be defined arbitrarily, e.g., only over the
“least domain”, denoted B, given by

y=2x=22z20, .6)

Once defined in @, w is generated throughout the space of the Cauchy Green tensor via
(2.2), and then throughout the space of the deformation gradients via (2.1). Thus, e.g. in simple

shear, where
{1 A
A'(o 1)’

one finds from (2.6) that w may be defined arbitrarily only over

2={ 0sArsi.
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3. THE STABILITY CRITERION
The stability of piecewise homogeneous configurations of the body is assessed with respect
to perturbations which are themselves piecewise homogenocus. Any internal boundaries of

such configurations must be planar. Consequently, two-phase perturbations admitted to the
stability criterion must be such that (in plane strain) there exists a nonzero vector x such that

AQX = Azx, (3])

where A; and A, are the matrices of deformation gradients in the two phases, the common
boundary of the two phases being parallel to x. From (3.1), one phase must be related to the
other via a shear parallel to x and a compression (or extension) perpendicular to x. We shall say
that strains corresponding to deformation gradients related via (3.1) are commensurable.

Let &, be the total energy per unit reference volume of the body in any configuration k with
continuous displacements and piecewise constant gradients. The configuration £ is then called
stable, neutrally stable or unstable with respect to the perturbation to k according as (&; — &) is
positive, zero or negative. This is the energy criterion. Thus a configuration is judged at least
neutrally stable to all disturbances if and only if the total energy per unit reference volume is a
strong global minimum.

We catalogue various loading devices. Firstly, imagine a soft dead loading device where the
nominal stress is constrained to be constant, N° say, throughout the body and throughout the
virtual strain. Then the total energy per unit volume is

%, =% f {(W(A) - tr N°A}dV, 32)

where the integration extends over the reference configuration of the body (of volume V).
Secondly, consider a related hard dead loading device where some linear combination of the
overall deformation gradients per unit reference volume remains constant. Thus

zr—l-vpfAdv=k 33)

where P is a constant matrix, and k a constant scalar. As is customary, assume that the forces
of constraint do no work in perturbations satisfying the constraints. Then

g, =-“7 f w(A)dV, G.4)

Evidently, (3.3) may be satisfied by the application of the appropriate surface displacements.

Finally, imagine a generalized soft device wherein the body is homogeneously deformed so
that a given conjugate stress (in the sense of Hill (4)) remains constant, T° say. Let the
corresponding strain measure be denoted by E. Then

L= f {(w(B) - trT°E} dV. 35)
Notice that the related generalized hard device, where
L3 trP I Edv
\ %

is constrained to be constant, may not generally be controlled by surface displacements.
Therefore we pursue it no further.

For either dead loading device, a necessary condition that the phase corresponding to A be
globally stable is that

w{A) — w(A)— IrN*(A - A) >0, 3.6)
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for all A, where N° is the given nominal stress in the soft device, and where
N°=uP, 3.7

where u is an unknown Lagrange multiplier, in the hard device. Conversely, by integration,
(3.6) is sufficient for strict stability with respect to all admissible perturbations. Notice that (3.6)
fails if the perturbation is a superposed infinitesimal rigid rotation.

The theory, it turns out, will determine only the concentrations of phases so that, at best,
one expects only neutral stability, for different configurations may correspond o the same
concentrations of the same phases. Therefore, in what follows, we seek equilibrium states
which are at least neutrally stable, this being best possible.

Suppose that the linear path form A to A is in the domain of w. Let

A@s)=A+s[A-A], s€0,1] (3.8)

Then (3.6) may be rewritten as

Q= [ Fyds- Fo)>o, 39)
where
F(s)= tr{ y j‘(‘;) (A- A)} (3.10)

is the directional derivative of w along the specified linear path.

4. THE FORM OF THE STRAIN ENERGY FUNCTION

We shall specify a particular form of strain energy function. This implies that we cannot lay
down the class of disturbances for which (3.6) is valid, but can only assess the stability of a
particular configuration of the material. One cannot expect (3.6) to be valid for all disturbances.
An “observable” configuration will be stable to infinitesimal perturbations and also, generally,
to some larger set of finite perturbations, this larger set being determined once the strain energy
function is prescribed.

In assessing the stability of phase mixtures, we shall allow only configurations such that
there is no discontinuity of traction across any internal boundary. The condition may be
satisfied by admitting only phases, A and A, corresponding to the same nominal stress, N say.
Thus

N(A) = N(A) = N~ @1
Suppose, following Ericksen{1], that F is not monotonic, but assumes the form shown

below.
The functional Q measures the difference of the two areas shaded in Fig. 1.
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Fig. 1.
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Imagine that the material may be held at a point (in the space of A) which is at least
neutrally stable in either dead loading device. Consider, first of all, the soft dead loading device
and, suppose that the constitutive law N(A) is uniquely invertible at the value N°. Then there is
only one solution to the problem of equilibrium. Suppose, now, that the N(A) relation is such
that there are two, and only two, phases A and A such that

N(4)= N(A) = N°, 4.1) bis,

and such that the material is at least neutrally stable to some set of perturbations (including all
infinitesimal perturbations) at both points, A and A. Then either the point A or the point A is at
least neutrally stable with respect to the other considered as a perturbation, depending on the
sign of Q. Also, either A or A is at least neutrally stable with respect to all perturbations on the
linear path which includes A and A (provided that F is not monotonic only in the interval
[0, 1]), see Ericksen(1], and so, by continuity, at least neutrally stable with respect to some set
of finite perturbations not necessarily on that path. With the assumption that Q varies smoothly
as the material is constrained to move along some deformation path, it follows that the material
should “snap”, discontinuously, into another configuration, or phase, as Q changes sign,
provided that there is sufficient energy to effect the perturbation. As remarked by Ericksen,
when there is not sufficient energy some form of hysteresis is exhibited. For isotropic solids,
Ogden|5] has shown that there are at least four distinct branches of the inversion A(N). Some
such transition as that indicated above is then to be expected, but we postpone a detailed
consideration to a later work. Similar remarks apply to the generalized soft loading device.

Secondly, the hard dead loading device is such that N is constrained to be parallel to P, see
(3.7). The one dimensional theory of Ericksen is readily generalized. Thus u is chosen to
minimise the total energy per unit reference volume, and it is found that in the range

trPA <k < rPA, 4.2

where A and A are such that Q =0, a phase mixture exists and is at least neutrally stable with
respect to all perturbations on the specified linear path. The phase mixture will then also be at
least neutrally stable with respect to some set of finite perturbations not necessarily on that
“path. The concentrations of the phases are determined from (3.3). There is an at least neutrally
stable homogeneous configuration of the material outside the range given by (4.2).

It is tacit that the strain energy function is such that the branches of the inversion A(N)
(along the path N = uP) are commensurable, in the sense that the points A and A such that

N(A)=N(A) =P, “4.3)
are commensurable. This may be regarded as a rather weak constitutive requirement, or
perhaps as a selection criterion.

The instabilities may be categorized. Suppose that A and A are such that Q =0. Then if A
and A correspond to rearrangements of the lattice, so that

A=RAG, 4.4

where RR'=1 and G € I', we shall say that the instability is induced by symmetry. For
example, in assessing the stability of a stress-free state, (4.1) reduces to

w(A) - w(A)>0. 4.5
This inequality is violated by any rearrangement of the lattice. A combination of phases is to be
expected in any continuing deformation of the crystal. Generally, when (4.9) does not hold, the
instability depends on the details of w in 9.

5. TWINNING
Twinning is a symmetry induced instability.
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Fig. 2.

Let OABC be a cell which generates the deformed lattice. Then the twinned lattice is
generated by ODEF, which is the mirror image, in the invariant line FOA, of a cell congruent to
OABC. A simple shear parallel to FOA carries the sites of the original lattice points into the
sites of the twin. The strain energies of the crystal and its twin are identical, for the twin is just
the “left-handed” version of the crystal, as may be verified by Noll's rule.

Refer the deformation gradient to axes parallel and perpendicular to the invariant line. Then
the crystal is neutrally stable to the twinning mode in dead loading provided that

trN°(A - A) =0, G0
where
{1 # il -
A~(0 v)’ -(0 r) say
Notice that
A=RAG (5.2
where
A (-1 0
R-G-( o ) 5.3)

Let n? be the components of N°, then (5.1) reads

ns; =0 (5.4
This relation ensures that the energy of the loading device is the same in both phases. We have
also to ensure that the equilibrium equations are satisfied throughout the material. Therefore we
require that

N(A)=N(A)= N>, (4.1) bis

or, in terms of the Cauchy stress, denoted X (A),

AT A=A (A 65
Note that, from (3.5},

S AXA™" )= D (AXA ") (5.6)

where » is an arbitrary vector. Choosing » to be the normal 10 the phase boundary in the
undeformed configuration, eqn (5.6) expresses the continuity of traction across that boundary.
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The Cauchy stresses in the two phases are related via
2 (A=RZ (AR, 6.7
by objectivity. Substituting in eqn (5.5), one finds
A" T (A)=RA' T (AR, (58)

and it follows that
Op=0n=<= 0, (5-9)

where the components of Z(A) are denoted o; Equations (5.9) are sufficient that (5.4) hold.
From (5.9), twinning may occur if and only if the traction on the invariant line is zero.

These calculations will be found most useful in a phenomenological theory of crystal
behaviour. One envisages the construction of a hypothetical strain energy function, possibly
using Ref. [3], and then, at any given strain, the calculation of the domain of stability (that is,
the calculation of those A such that eqn (3.6) holds). If this domain is large enough, then the
theory will allow phase transitions, and twinning, in particular. Notice that, in twinning, A -~ A
may be arbitrarily small, so that this assumption is not too restrictive. Phase transitions are
readily observed in practice, so that their prediction provides a convenient test of the suitability
of a strain energy function.
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